exact diagram of infinite general linear groups and elementary linear groups

Proposition

Proof

commutes

follows as we have a diagram

20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_ec53050ca98977b88aa1269206cc412a5328d767.svg

where the morphisms are natural with respect to Ring homomorphism.

Then by colim functor preserves naturality we conclude that

20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_55b979b89ab6bdfe8613ba66eb2bda210d05c67a.svg

is natural with respect to ring homomorphism.
Thus by applying the cokernel functor

we get
a) exactness
b) commutativity

surjective morphism

a) 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_97995a252e4da01747b6217dc791dd7a71ab067a.svg

follows from lifting generators 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_b17f60b16c37c89bab2fcd475e30d62b9df153b9.svg to 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_649d2d6a44ac644c0c18112dd4e5e792623f69e5.svg

b) 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_c55a67851a7fe6a031dd7ff10cd71f02df1e82fa.svg

follows from lifting 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_8215246561b79bd45e37e75118ddb205a6c5f0d7.svg to 20241026-exact_diagram_of_infinite_general_linear_groups_and_elementary_linear_groups_9addc668c901e04762bcc1c95436cd90e5854b20.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 21:12