Fp vector space is p-torsion abelian group

Proposition

Let 20260202-f_p_vector_space_is_p_torsion_abelian_group_82d648c34592a2b53436a392fc3bcb25bfa5e40a.svg be a prime number and 20260202-f_p_vector_space_is_p_torsion_abelian_group_bc693172e3e84a891cfc37b25c000aa67abdac66.svg an abelian group.
Suppose for each 20260202-f_p_vector_space_is_p_torsion_abelian_group_aa0210698c870c42c0806f295528916f1e1d5d65.svg

20260202-f_p_vector_space_is_p_torsion_abelian_group_a1fa65f3a08cb7cf43fa7a729146df79f9d0e07d.svg

Then 20260202-f_p_vector_space_is_p_torsion_abelian_group_bc693172e3e84a891cfc37b25c000aa67abdac66.svg is the underlying additive group of a 20260202-f_p_vector_space_is_p_torsion_abelian_group_8c8fd8f463147f24d92f4eb3ba149ab9473ed057.svg vector space.

Proof

Let 20260202-f_p_vector_space_is_p_torsion_abelian_group_aa0210698c870c42c0806f295528916f1e1d5d65.svg and 20260202-f_p_vector_space_is_p_torsion_abelian_group_66e54361d336ecc6ec2627ba9892de85385dedab.svg.
Then define 20260202-f_p_vector_space_is_p_torsion_abelian_group_30427ebeb5bfa15c706b23e39fd0ebb01e4e9041.svg.

This definition is welldefined, since for 20260202-f_p_vector_space_is_p_torsion_abelian_group_a41eb27548d09a98574284f54a32109cf33e31d8.svg

20260202-f_p_vector_space_is_p_torsion_abelian_group_71093f7ef4692dfe214190aa6e37e25fdfe60287.svg

Then one can check, that this multiplication give sa

Remark

this is a proof using methods from commutative algebra:

Let 20260202-f_p_vector_space_is_p_torsion_abelian_group_fceaf1888cb184a11f8f0a24003ac2da3d6a9639.svg be an abelian group, 20260202-f_p_vector_space_is_p_torsion_abelian_group_4778c5cfed404145fdf2f67ff7ad1a9e566f1105.svg the ring consisting of group-isomorphism (under pointwise addition and composition).

Then a 20260202-f_p_vector_space_is_p_torsion_abelian_group_b38a59450bab55982b006cf9aa75bfd47f38ce85.svg vector space structure is precisely a ring homomorphism 20260202-f_p_vector_space_is_p_torsion_abelian_group_73fb662db8d52262da1bdc5ef3e02f268d439882.svg.
If every element in 20260202-f_p_vector_space_is_p_torsion_abelian_group_fceaf1888cb184a11f8f0a24003ac2da3d6a9639.svg is 20260202-f_p_vector_space_is_p_torsion_abelian_group_201ffd0f343f4540565e9bd9704e52665c5ed696.svg-torsion, this amounts precisely to the statement that the map

20260202-f_p_vector_space_is_p_torsion_abelian_group_5414762badf0c6a1f7feff3d891deffa11d4eecc.svg

is the zero morphism.
So by the universal property of 20260202-f_p_vector_space_is_p_torsion_abelian_group_c8a26f3714e77a3d68d7258be639c1967df362ff.svg there exists an extension

20260202-f_p_vector_space_is_p_torsion_abelian_group_1650ebf149dfb32c30166a4038c20ee3a7eb6e23.svg

Date: nil

Author: Anton Zakrewski

Created: 2026-02-02 Mo 17:45