Q-Vector space is uniquely divisible abelian group

Proposition

Let 20260202-q_vector_space_is_uniquely_divisible_abelian_group_bc693172e3e84a891cfc37b25c000aa67abdac66.svg be a uniquely divisible abelian group.

Then 20260202-q_vector_space_is_uniquely_divisible_abelian_group_bc693172e3e84a891cfc37b25c000aa67abdac66.svg admits a unique 20260202-q_vector_space_is_uniquely_divisible_abelian_group_18278694fe7f6074e0af9a085482864d1d5964cc.svg-vectorspace structure.

Proof

Let 20260202-q_vector_space_is_uniquely_divisible_abelian_group_aa0210698c870c42c0806f295528916f1e1d5d65.svg and 20260202-q_vector_space_is_uniquely_divisible_abelian_group_4234e1326038d734e28cb30344b25e1242505be4.svg.
Then there exists an 20260202-q_vector_space_is_uniquely_divisible_abelian_group_c6162a87a3c343c371111025c1853c781db35576.svg such that 20260202-q_vector_space_is_uniquely_divisible_abelian_group_84906516684ff80a01097208e9792f5c56b9f508.svg.
Then define

20260202-q_vector_space_is_uniquely_divisible_abelian_group_d1bb0a3933008ed3732af5837ddaac3432b558e4.svg

One can then show that this then is a welldefined 20260202-q_vector_space_is_uniquely_divisible_abelian_group_18278694fe7f6074e0af9a085482864d1d5964cc.svg-vector space.

Here one would use the uniqueness to show (pseudo-)associativity, distributivity etc.

Remark

this is a proof using methods from commutative algebra:

Let 20260202-q_vector_space_is_uniquely_divisible_abelian_group_fceaf1888cb184a11f8f0a24003ac2da3d6a9639.svg be an abelian group, 20260202-q_vector_space_is_uniquely_divisible_abelian_group_4778c5cfed404145fdf2f67ff7ad1a9e566f1105.svg the ring consisting of group-isomorphism (under pointwise addition and composition).

Then a 20260202-q_vector_space_is_uniquely_divisible_abelian_group_b38a59450bab55982b006cf9aa75bfd47f38ce85.svg vector space structure is precisely a ring homomorphism 20260202-q_vector_space_is_uniquely_divisible_abelian_group_73fb662db8d52262da1bdc5ef3e02f268d439882.svg.
If 20260202-q_vector_space_is_uniquely_divisible_abelian_group_fceaf1888cb184a11f8f0a24003ac2da3d6a9639.svg is uniquely divisible, then the map

20260202-q_vector_space_is_uniquely_divisible_abelian_group_35189f75a15d3548d323e8e635aa2106ed7d952c.svg

is an isomorphism, so in particular lives in the unit 20260202-q_vector_space_is_uniquely_divisible_abelian_group_abe540dd72b73a9101f55153ef20380c3962d314.svg.
So by the universal property of 20260202-q_vector_space_is_uniquely_divisible_abelian_group_5a60bb58cf55ac8461fbc2130a4e1a3b2913b8ec.svg there exists an extension

20260202-q_vector_space_is_uniquely_divisible_abelian_group_2ff0564b0f76177ade52ab1138a4cb8c9afd69eb.svg

Date: nil

Author: Anton Zakrewski

Created: 2026-02-02 Mo 17:15