linearly independent
Definition
Let \(R\) be a commutative ring, \(M\) a \(R\)-module and \(S \subseteq M\) a subset.
Then \(S\) is linearly independent, if for a linear combination with \(r_i \in R, m_i \in S\)
Let \(R\) be a commutative ring, \(M\) a \(R\)-module and \(S \subseteq M\) a subset.
Then \(S\) is linearly independent, if for a linear combination with \(r_i \in R, m_i \in S\)
Date: nil
Created: 2025-11-11 Di 10:30