left ideal

1. Definition

Let \(A\) be a ring and \(\mathfrak{a}\) an additive subgroup. Then \(\mathfrak{a}\) is said to be a left ideal, if for \(\alpha \in A, a \in \mathfrak{a}\)

\begin{align*} \alpha \cdot a \in \mathfrak{a} \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-12 Sa 23:02