homotopy under composition

1. Proposition

Let \((X, \mathcal{T}_X)\), \((Y, \mathcal{T}_Y)\) and \((Z, \mathcal{T}_Z)\) be topological spaces, \(f_0,f_1: X \rightarrow Y\) and \(g_0,g_1: Y \rightarrow Z\) continuous map such that

\begin{align*} f_0 \cong& f_1 \\ g_0 \cong& g_1 \end{align*}

Then

\begin{align*} g_0 \circ f_0 \cong g_1 \cong f_1 \end{align*}

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 22:40