Ab-enriched category

1. Definition

2. Explicite

Let \(\mathcal{C}\) be a locally small category. Then \(\mathcal{C}\) is said to be Ab-enriched, if for objects \(x,y \in \mathrm{Ob}(\mathcal{C})\) the hom-set \(\mathrm{Hom}_{\mathcal{C}}(x,y)\) is an abelian group and that the composition

\begin{align*} \mathrm{Hom}_{\mathcal{C}}(x,y) \times \mathrm{Hom}_{\mathcal{C}}(y,z) \rightarrow \mathrm{Hom}_{\mathcal{C}}(x,z) \end{align*}

is a bilinear map of abelian groups.

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:59