path inside the mapping space as homotopy
1. Proposition
Let \(X,Y\) be topological spaces, where \(X\) is locally compact and \(\varphi: A \rightarrow Y\) a continuous map for \(A \subseteq X\). Then a homotopy relative to \(\varphi\) is precisely given by a path
\begin{align*} \gamma: [0,1] \rightarrow \mathrm{Map}_A(X,Y) \end{align*}2. Proof
by continuous map and restriction to the image, we may embed w.l.o.g. \(\mathrm{Map}_A(X,Y) \hookrightarrow \mathrm{Map}(X,Y)\) and thus also
\begin{align*} \mathrm{Map}([0,1], \mathrm{Map}_A(X,Y)) \hookrightarrow \mathrm{Map}([0,1], \mathrm{Map}(X,Y)) \end{align*}(see: covariant compact open functor)
by currying of mapping spaces of locally compact spaces as homeomorphism we then get
\begin{align*} \mathrm{Map}([0,1], \mathrm{Map}_A(X,Y)) \cong \mathrm{Map}([0,1] \times X, Y) \end{align*}Thus
\begin{align*} \mathrm{Map}([0,1], \mathrm{Map}_A(X,Y)) \arrow[hookrightarrow]{r}{\iota} & \mathrm{Map}([0,1], \mathrm{Map}(X,Y)) \arrow[]{r}{\cong}& \mathrm{Map}([0,1] \times X, Y) \end{align*}We may again restrict the map to the image and get a Bijection
\begin{align*} \mathrm{Map}([0,1], \mathrm{Map}_A(X,Y)) \cong \mathrm{Map}_{[0,1] \times A}([0,1] \times X, Y) \end{align*}Here the restiction is given by the construction of the homeomorphism