multiplicativity of the singular homological degree on the sphere
1. Proposition
Given the n-sphere \(S^n\) and continuous maps \(f,g: S^n \rightarrow S^n\), we get for the singular homological degree
\begin{align*} \mathrm{deg}(f \circ g) = \mathrm{deg}(f) \cdot \mathrm{deg}(g) \end{align*}(n = 0) ?
2. Proof
By functorality of the singular homology functor, we get
\begin{align*} \mathrm{H}_{n}(f \circ g) = \mathrm{H}_n(f) \circ \mathrm{H}_n(g) \end{align*}and by definition of the singular homological degree as endomorphism ring, we get for the ring-isomorphism
\begin{align*} \varphi: \mathrm{End}(\mathbb{Z}) \rightarrow \mathbb{Z} \end{align*}the identity
\begin{align*} \mathrm{deg}(f \circ g) =& \varphi( \mathrm{H}_n(f) \circ \mathrm{H}_n(g)) \\ =& \varphi(\mathrm{H}_n(f)) \cdot \varphi(\mathrm{H}_n(g)) \\ =& \mathrm{deg}(f) \cdot \mathrm{deg}(g) \end{align*}