endomorphism ring of an abelian group
1. Definition / Proposition
Let \( (G,+)\) be an abelian group. Then the endomorphism ring \(\mathrm{End}(G)\) is defined as ring with
- group-endomorphism as elements,
- usual addition (cf. Menge der abelschen Gruppenhomomorphismen als abelsche Grupper
- composition as multiplication
- identity morphism as neutral element
2. Proof
2.1. additive group
follows from abelian group homomorphisms as abelian group
2.2. composition
follows from composition of group homomorphisms as group homomorphism, identity morphism as neutral element.
2.3. distributivity
Let \(\varphi_1,\varphi_2,\varphi_3\) be endomorphisms, then for arbitrary \(g \in G\) it holds, that
\begin{align*} \varphi_1 \cdot (\varphi_2 + \varphi_3)(g) =& \varphi_1 \circ (\varphi_2(g) + \varphi_3(g)) \\ =& \varphi_1(\varphi_2(g)) + \varphi_1(\varphi_3(g)) \\ =& (\varphi_1 \circ \varphi_2)(g) + (\varphi_1 \circ \varphi_2)(g) \\ =& ((\varphi_1 \cdot \varphi_2) + (\varphi_1 \cdot \varphi_3))(g) \end{align*}and
\begin{align*} (\varphi_2 + \varphi_3) \cdot \varphi_1(g) =& (\varphi_2 + \varphi_3) \circ \varphi_1(g) \\ =& \varphi_2(\varphi_1(g)) + \varphi_3(\varphi_1(g)) \\ =& (\varphi_2 \circ \varphi_1)(g) + (\varphi_3 \circ \varphi_1)(g) \\ =& (\varphi_2 \cdot \varphi_1 + \varphi_3 \cdot \varphi_1)(g) \\ \end{align*}