endomorphism ring of an abelian group

1. Definition / Proposition

Let \( (G,+)\) be an abelian group. Then the endomorphism ring \(\mathrm{End}(G)\) is defined as ring with

  1. group-endomorphism as elements,
  2. usual addition (cf. Menge der abelschen Gruppenhomomorphismen als abelsche Grupper
  3. composition as multiplication
  4. identity morphism as neutral element

2. Proof

2.1. additive group

2.2. composition

2.3. distributivity

Let \(\varphi_1,\varphi_2,\varphi_3\) be endomorphisms, then for arbitrary \(g \in G\) it holds, that

\begin{align*} \varphi_1 \cdot (\varphi_2 + \varphi_3)(g) =& \varphi_1 \circ (\varphi_2(g) + \varphi_3(g)) \\ =& \varphi_1(\varphi_2(g)) + \varphi_1(\varphi_3(g)) \\ =& (\varphi_1 \circ \varphi_2)(g) + (\varphi_1 \circ \varphi_2)(g) \\ =& ((\varphi_1 \cdot \varphi_2) + (\varphi_1 \cdot \varphi_3))(g) \end{align*}

and

\begin{align*} (\varphi_2 + \varphi_3) \cdot \varphi_1(g) =& (\varphi_2 + \varphi_3) \circ \varphi_1(g) \\ =& \varphi_2(\varphi_1(g)) + \varphi_3(\varphi_1(g)) \\ =& (\varphi_2 \circ \varphi_1)(g) + (\varphi_3 \circ \varphi_1)(g) \\ =& (\varphi_2 \cdot \varphi_1 + \varphi_3 \cdot \varphi_1)(g) \\ \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:54