suspension functor

1. Definition

Given category Top, the suspension functor is defined as functor

20240109-suspension_functor_bd44fba223ed440bbbc2119e1c77daf6ac7f7054.svg

where 20240109-suspension_functor_020c8f477a46083159b70f5af2d58dc45a5fc7cb.svg is the Suspension and

20240109-suspension_functor_c73a6e2ad0a4f591840215d2f7992000704dde69.svg

Here we get a factorization

20240109-suspension_functor_5781de0f8ae59ea0f593a934e3dfee63a711434a.svg

Here by universal property of a continuous map, 20240109-suspension_functor_7a47dc1d55bf503489e6a1fdbb17557a43dddc5f.svg is continuous if and only if

20240109-suspension_functor_1e2aadc65b380c83147edcfe1de5ad790a54f2ed.svg

is continuous Here, since

20240109-suspension_functor_1256c9659336c895d86d181eeb5b8204365f100a.svg

it follows, that 20240109-suspension_functor_2d432d752a29fbf4de7e5e946c402d5c479001c8.svg is continuous, hence also 20240109-suspension_functor_7a47dc1d55bf503489e6a1fdbb17557a43dddc5f.svg

Date: nil

Author: Anton Zakrewski

Created: 2024-10-19 Sa 21:34