restriction of a module homomorphism to the image as module homomorphism
1. Proposition
Let \(R\) be a ring, \(\varphi: M \rightarrow N\) a module-homomorphism and \(L \subseteq N\) a submodule such that
\begin{align*} \mathrm{im}(\varphi) \subseteq L \end{align*}Then the map
\begin{align*} \varphi': M \rightarrow L \\ m \mapsto& \varphi(m) \end{align*}is a welldefined module homomorphism
2. Proof
Properties of the module homomorphism are inherited by \(\varphi'\), hence it follows from the definitions