covariant hom functor from Ab to RMod
1. Definition
Let \(R\) be a ring. Then the covariant hom functor is defined as functor
\begin{align*} \mathrm{Hom}_{\mathrm{Ab}}(R,-): \mathrm{Ab} \rightarrow& \mathrm{RMod} \\ M \mapsto& \mathrm{Hom}_{\mathrm{Ab}}(R,M) \\ \end{align*}see:
- covariant hom functor from Grp to RMod
- where \(\mathrm{Hom}_{\mathrm{Ab}}(R,A) = \mathrm{Hom}_{\mathrm{Grp}}(R,A)\) for \(A \in \mathrm{Ob}(\mathrm{Ab})\), as Category Ab is a full subcategory