covariant hom functor from Grp to RMod

1. Proposition

Let \(R\) be a ring, then the covariant hom functor from category Group to category RMod is defined as functor

\begin{align*} \mathrm{Hom}_{\mathrm{Grp}}(R,-): \mathrm{Grp} \rightarrow& \mathrm{RMod} \\ G \mapsto& \mathrm{Hom}_{\mathrm{Grp}}(R,G) \\ (\varphi: G \rightarrow H) \mapsto& \left( \varphi^{ \leftarrow}: \mathrm{Hom}_{\mathrm{Grp}}(R,G) \rightarrow \mathrm{Hom}_{\mathrm{Grp}}(R,H) \right)\\ \end{align*}

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 08:54