postcomposition on hom sets as r-module as module homomorphism
1. Proposition
Let \(G,H\) be groups and \(\varphi: G \rightarrow H\) a group-homomorphism. Suppose \(R\) is a ring and
\begin{align*} \mathrm{Hom}_{\mathrm{Grp}}(R,G), \mathrm{Hom}_{\mathrm{Grp}}(R,H) \end{align*}the hom set from R to a Group as R-Module. Then postcomposition
\begin{align*} \varphi^{ \leftarrow}: \mathrm{Hom}_{\mathrm{Grp}}(R,G) \rightarrow& \mathrm{Hom}_{\mathrm{Grp}}(R,H) f \mapsto& \varphi(f) \end{align*}is a module-homomorphism
2. Proof
2.1. preserves additive structure
2.2. preserves multiplicative structure
Let \(r_1 \in R\), then it follows for \(r_2 \in R\) and $f ∈ \mathrm{Hom}\mathrm{Grp}(R,G), that
\begin{align*} r \cdot (\varphi^{ \leftarrow} f(r_2)) =& r_1 \cdot \varphi \circ f(r_2) \\ =& r_1 \cdot (\varphi \circ f)(r_2) \\ =&(\varphi \circ f)(r_1 \cdot r_2) \\ =& \varphi^{ \leftarrow} (f(r_1 \cdot r_2)) \\ =& \varphi^{ \leftarrow}(r_1 \cdot f(r_2)) \end{align*}