relative K1 depends on the Ring

Proposition

Let

20250112-relative_k1_depends_on_the_ring_49890d0365a4f0a08575780493922a54e09a5a2d.svg

be rings 20250112-relative_k1_depends_on_the_ring_ed8d003b66e6574aa9fb9345deda6426c5a39a2b.svg with ideals 20250112-relative_k1_depends_on_the_ring_aee92c1112b23b8e118e23c884bc9c2bd009cd36.svg such that

20250112-relative_k1_depends_on_the_ring_50c6b931f1a4587dbeaa742e3d11027b2ce56080.svg

is a Bijection

Then in general we can't conclude that

20250112-relative_k1_depends_on_the_ring_acae950b3e082f7f6bb9b871286050032f804ae8.svg

Proof

Let 20250112-relative_k1_depends_on_the_ring_446b0665bfd5cf5c5b4169960840e91cf88dcf0b.svg denote your favorite field,

20250112-relative_k1_depends_on_the_ring_af381348ee99185feb796ff0b7e3f3255a131e83.svg

and the ring morphism

20250112-relative_k1_depends_on_the_ring_ba527a26755ee0d62002feaa5c9671fc8b44667b.svg

Then both maps have the same kernel

20250112-relative_k1_depends_on_the_ring_c2bbf19e967d6bc49b09dc85cf129acc9a70fdf5.svg

and are split epis with one sided inverse

20250112-relative_k1_depends_on_the_ring_604fbc07548e0db3f512675cf3d8a9aefe27ff15.svg

resp.

20250112-relative_k1_depends_on_the_ring_fd9dbf53b13f3b5174b512e0dc6887987e9571c1.svg

by relative general linear group depends only on the ideal

20250112-relative_k1_depends_on_the_ring_ab6468d8c506553a57dfba523d7bfac7e6cee5ad.svg

Consider

20250112-relative_k1_depends_on_the_ring_3f4b4ca9dd9880468f3a4d75e70bafe3e1b609a3.svg

Then define

20250112-relative_k1_depends_on_the_ring_84bb9f29bf45b6b3097c789f57189a33ae988991.svg

which represents an element in 20250112-relative_k1_depends_on_the_ring_4a736a932ce290e37bb8879b2a505e63b184ccf7.svg.

It follows that 20250112-relative_k1_depends_on_the_ring_6a0efac5517736a009d876a2b95af3de8b34746c.svg hence 20250112-relative_k1_depends_on_the_ring_43a974db0ca0cf0b9d0ab34c97b2875f02153be5.svg.

we want to show, that 20250112-relative_k1_depends_on_the_ring_b240c61afc4ee1207a623afaae46463946106c02.svg.

Note that

20250112-relative_k1_depends_on_the_ring_6aa869e39342a85b15eb255543080cc9d7279d7a.svg

is commutative, hence the determinant map of k1 of a ring

20250112-relative_k1_depends_on_the_ring_09f0883cc3dad13364f7eba4ff1032b610cc60fa.svg

is welldefined.

But then it follows that (omitted)

20250112-relative_k1_depends_on_the_ring_a5dad8d775dab37f5ecc5fd97803e9decc57d666.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 17:04