analogy: finite sets and finite dimensional vector space

Aspects

  finite set finite dimensional vector space
bijection Äquivalenz von Bijektivität, Surjektivität und Injektivität bei gleich mächtigen, endlichen Mengen Äquivalenz von Isomorphismus, Monomorphismus und Epimorphismus für Vektorräume gleicher, endlicher Dimension
Restrictions \(f: A \cong B\) bijection \(\Rightarrow \vert A \vert = \vert B \vert\) \(\varphi: V \rightarrow W\) vs-iso \(\Rightarrow \mathrm{dim}(V) = \mathrm{dim}(W)\)
  \(\vert A \vert = \vert B \vert \Rightarrow\) existence of a bijection \(\mathrm{dim}(V) = \mathrm{dim}(W) \Rightarrow\) existence of an vs-iso
  \(f: A \twoheadrightarrow B\) surjective \(\Rightarrow \vert A \vert \geq \vert B \vert\) \(\varphi: V \rightarrow W\) vs-epi \(\Rightarrow \mathrm{dim}(V) \geq \mathrm{dim}(W)\)
  \(\vert A \vert \geq \vert B \vert, B \neq \emptyset \implies \exists f: A \twoheadrightarrow B\) surjective \(\mathrm{dim}(V) \geq \mathrm{dim}(W) \implies \exists \varphi: V \rightarrow W\) vs-epi
  \(f: A \hookrightarrow B\) injective \(\Rightarrow \vert A \vert \leq \vert B \vert\) \(\varphi: V \hookrightarrow W\) vs-mono \(\Rightarrow \mathrm{dim}(V) \leq \mathrm{dim}(W)\)
  \(\vert A \vert \leq \vert B \vert \implies \exists f: B \hookrightarrow A\) injective \(\mathrm{dim}(V) \leq \mathrm{dim}(W) \implies \exists \varphi: V \rightarrow W\) vs-mono

Date: nil

Author: Anton Zakrewski

Created: 2026-01-10 Sa 11:02