analogy: finite sets and finite dimensional vector space
Aspects
| finite set | finite dimensional vector space | |
|---|---|---|
| bijection | Äquivalenz von Bijektivität, Surjektivität und Injektivität bei gleich mächtigen, endlichen Mengen | Äquivalenz von Isomorphismus, Monomorphismus und Epimorphismus für Vektorräume gleicher, endlicher Dimension |
| Restrictions | \(f: A \cong B\) bijection \(\Rightarrow \vert A \vert = \vert B \vert\) | \(\varphi: V \rightarrow W\) vs-iso \(\Rightarrow \mathrm{dim}(V) = \mathrm{dim}(W)\) |
| \(\vert A \vert = \vert B \vert \Rightarrow\) existence of a bijection | \(\mathrm{dim}(V) = \mathrm{dim}(W) \Rightarrow\) existence of an vs-iso | |
| \(f: A \twoheadrightarrow B\) surjective \(\Rightarrow \vert A \vert \geq \vert B \vert\) | \(\varphi: V \rightarrow W\) vs-epi \(\Rightarrow \mathrm{dim}(V) \geq \mathrm{dim}(W)\) | |
| \(\vert A \vert \geq \vert B \vert, B \neq \emptyset \implies \exists f: A \twoheadrightarrow B\) surjective | \(\mathrm{dim}(V) \geq \mathrm{dim}(W) \implies \exists \varphi: V \rightarrow W\) vs-epi | |
| \(f: A \hookrightarrow B\) injective \(\Rightarrow \vert A \vert \leq \vert B \vert\) | \(\varphi: V \hookrightarrow W\) vs-mono \(\Rightarrow \mathrm{dim}(V) \leq \mathrm{dim}(W)\) | |
| \(\vert A \vert \leq \vert B \vert \implies \exists f: B \hookrightarrow A\) injective | \(\mathrm{dim}(V) \leq \mathrm{dim}(W) \implies \exists \varphi: V \rightarrow W\) vs-mono |