abelian group in general not an injective object

Proposition

Let 20260202-abelian_group_in_general_not_an_injective_object_bc693172e3e84a891cfc37b25c000aa67abdac66.svg be an abelian group, then 20260202-abelian_group_in_general_not_an_injective_object_bc693172e3e84a891cfc37b25c000aa67abdac66.svg is in general not an injective object.

Proof

Let 20260202-abelian_group_in_general_not_an_injective_object_b9ae6c2d73183a7c4d588e3b05d74428ce481baa.svg.
Then we need to find a group 20260202-abelian_group_in_general_not_an_injective_object_7fb417af05eeb2c7d5dd264a4acac431e528f8de.svg and a subgroup 20260202-abelian_group_in_general_not_an_injective_object_5fd6b96827550b700ecc08ed128bdbb801a6c01e.svg and a group homomorphism 20260202-abelian_group_in_general_not_an_injective_object_fb1d47cf389792c720339b6abfabd65a80a484f7.svg which does not extend to 20260202-abelian_group_in_general_not_an_injective_object_7fb417af05eeb2c7d5dd264a4acac431e528f8de.svg

20260202-abelian_group_in_general_not_an_injective_object_e284bee3cd54e079524512366546d64b138bc32a.svg

So for example consider 20260202-abelian_group_in_general_not_an_injective_object_de0c383b9a16980fc66e6b767b4becb8b3a3867f.svg and 20260202-abelian_group_in_general_not_an_injective_object_1b643f8a40ff1cfb08908da9d1a019617dca1216.svg and

20260202-abelian_group_in_general_not_an_injective_object_0ac75566f33b71308ebb568a2994a734ff78f3d0.svg

where 20260202-abelian_group_in_general_not_an_injective_object_c8a26f3714e77a3d68d7258be639c1967df362ff.svg is the projection.

we claim that there does not exist an extension:
Assume there exists a 20260202-abelian_group_in_general_not_an_injective_object_074aa42758b4ab6c26c3b1c3160a4155a53b0859.svg with 20260202-abelian_group_in_general_not_an_injective_object_d6a5152ceee65f9e8d01449bef3aaca147542b08.svg.
Then in particular

20260202-abelian_group_in_general_not_an_injective_object_36ec17a09efd0e567f8341475a984085c3bf15c3.svg

which is a contradiction..

Date: nil

Author: Anton Zakrewski

Created: 2026-02-02 Mo 17:14