singular homological degree invariant under conjugation
1. Proposition
Given the n-sphere, a continuous map \(f: S^n \rightarrow S^n\) and an homeomorphism \(\varphi: S^n \rightarrow S^n\), it holds for the singular homological degree
\begin{align*} \mathrm{deg}(f) = \mathrm{deg}(\varphi \circ f \circ \varphi^{-1}) \end{align*}2. Proof
corollary of
- multiplicativity of the singular homological degree on the sphere
- commutativity of \(\mathbb{Z}\)
- singular homological degree of the identity on the sphere
as
\begin{align*} \mathrm{deg}(\varphi \circ f \circ \varphi^{-1}) =& \mathrm{deg}(\varphi) \cdot \mathrm{deg}(f) \cdot \mathrm{deg}(\varphi^{-1} \\ =& \mathrm{deg}(\varphi) \cdot \mathrm{deg}(\varphi^{-1}) \cdot \mathrm{deg}(f) \\ =& \mathrm{deg}(\varphi \circ \varphi^{-1}) \cdot \mathrm{deg}(f) \\ =& \mathrm{deg}(\mathrm{id}_{S^n}) \cdot \mathrm{deg}(f) \\ =& 1 \cdot \mathrm{deg}(f) \\ =& \mathrm{deg}(f) \end{align*}