direct product of modules as categorical product
1. Proposition
Let \(R\) be a ring and \(M_i\) a family of \(R\)-modules. Then the direct product of modules
\begin{align*} \prod_{i \in I} M_i \end{align*}with the projection
\begin{align*} \pi_i: \prod_{i \in I} M_i \rightarrow M_i \\ (m_i) \mapsto& m_i \end{align*}is the categorical product
2. Proof
Let \(N\) be a module with module-homomorphisms
\begin{align*} f_i: N \rightarrow M_i \end{align*}Then
\begin{align*} f: N \rightarrow \prod_{i \in I} M_i n \mapsto& (f_i(n)) \end{align*}is the unique morphism
2.1. module homomorphism
For \(n_1,n_2 \in N\) and \(r \in R\), we get by construction of the direct product
\begin{align*} f(n_1 + r \cdot n_2) =& (f_i(n_1) + f_i(r \cdot n_2)) \\ =& (f_i(n_1)) + (f_i(r \cdot n_2)) \\ =& (f_i(n_1)) + (r \cdot f_i(n_2)) \\ =& (f_i(n_1)) + r \cdot (f_i(n_2)) \\ \end{align*}2.2. commuting
Follows from
\begin{align*} \pi_i \circ f(n) =& \pi_i((f_i(n))) \\ =& f_i(n) \end{align*}2.3. uniqueness
Suppose \(g \neq f\), then there exists an element \((n)\) such that
\begin{align*} (m_i) = g(n) \neq f(n) \end{align*}and hence for some component \(m_i \neq f(n)_i\) Therefore, we get
\begin{align*} \pi_i(g(n)) = m_i \neq f_i(m_i) \end{align*}hence \(f\) is unique