order of an element divides group order

1. Proposition

Let \(G\) be a group and \(g \in G\). Then

\begin{align*} \mathrm{ord}(g) \mid \mathrm{ord}(G) \end{align*}

where for \(\mathrm{ord}(g), \mathrm{ord}(G) = \infty\) this is symbolic

2. Proof

corollary of Satz von Lagrange as

\begin{align*} \langle g\rangle \subseteq G \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 08:48