order of an element divides group order
1. Proposition
Let \(G\) be a group and \(g \in G\). Then
\begin{align*} \mathrm{ord}(g) \mid \mathrm{ord}(G) \end{align*}where for \(\mathrm{ord}(g), \mathrm{ord}(G) = \infty\) this is symbolic
2. Proof
corollary of Satz von Lagrange as
\begin{align*} \langle g\rangle \subseteq G \end{align*}