universal property of the quotient space via homomorphiesatz

Proposition

Let 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_d1327a9e9d1dc2a84d8cd1c97bd1d1370eacc9f3.svg be vector spaces and 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_23432ae9cba69a77ef15237b1a2bbbbafbd1d01f.svg the kanonical projection.
Then precomposition induces a vectorspace-isomorphism

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_594b59ca847164d0179801044b09b76b4d1da472.svg

Warning

the proof consists purely of diagram chasing.
I think the proof injectivity is a bit absurd (albeit interesting)
There exist less abstract proofs :)

Proof

welldefined

We want to show that the map 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_66ac78dc6b6c8032eefdca51adb242ad1bdeb89d.svg induced by precomposition restricts appropriately and that the RHS is a sub vector space.

sub vector space

Note that the inclusion

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_176eec7b151ac8aef9ba1021550de203aa8cab1b.svg

is a vectorspace-homomorphism

Then we can identify

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_fc8aab97b359ae61487d16c74e7af63bad7c7007.svg

since

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_e941516259c8539beba0f8532e0fcae465828b11.svg

restricts appropriately

omitted

bijective

setup

Let 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_6bda1a72ac97ed3f06f48462f7041ba803c7f036.svg with 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_5e5e6b5e792bdc8d69ec184478344a9de4aade92.svg.
Then in particular 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_4d1bdab633a477eb789e8d95024ef9ce97502c0d.svg.
We will denote by 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_b5307d86a14ca745473e242c2a388b40afae18c6.svg the canonical projections to the quotient space

Furthermore we get a diagram

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_3b215ffa8d37c9eeed97471a7486cdb078deeb71.svg

where 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_3110578c7fbb16c60ecc55264521c16c68e239c3.svg is the vectorspace-isomorphism given by the second isomorphism

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_e605b533995eaca14579d88adee225e98fb04345.svg

In particular we may identify the composition with 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_6243f117f41d5430d8980791cc1901e52d64eb7c.svg

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_e1281c7ae592835cc5e2681ac27c202ba631d50d.svg

injective - extra warning

Suppose 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_752750b4522146f7f9002e1d02d6a228f2cd3bad.svg with 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_d3b96b05a8405721b5cd654c4af3dae616cadec9.svg.
Then using our setup gives

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_e7e570bbca627e48b69b3a5dc4783d5913c9ce84.svg

in particular with 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_f8277aa596428418eb58e082f552f0bb73db3de2.svg where we use that 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_1a104b10c1f3ac2e2bd99f3efb0d5a77daa8a9ff.svg is surjective.

Now the homomorphiesatz gives homomorphisms 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_796abdf2f37495de863af399c2cf9eb3a60dba8f.svg such that

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_d89fb5dfce954ce3eb6badfc469362313a77be9a.svg

commutes.

Under the canonical isomorphism 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_5856f84ca79477eb5fe5fe0f2eeb0f9996d4d511.svg by we get maps 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_22b424fb0b212ba6a79ec32a0c90d74a80ad1d2d.svg

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_03098a6630a06c232cdd1d5d5018e00cf6db7c5a.svg

which are given as composition

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_580de4f2c8663b45043a535b5e2c5716dd2e7684.svg

In particular

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_38bb687da3d667d1c8bb734e6191cd7729452111.svg

commutes.

Now those maps 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_22b424fb0b212ba6a79ec32a0c90d74a80ad1d2d.svg are also maps making

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_c20c22c988d3f57fa6fdbe0eb3c83f0851cde134.svg

commute, so uniqueness of the Homomorphiesatz shows 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_b95091ccab09d58fbcd1ed441ccc134cc06c21eb.svg.

Now

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_38bb687da3d667d1c8bb734e6191cd7729452111.svg

commutes, which shows that 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_4ba6e8a68846862074cf06857932c792376ac463.svg.

And at last we know that

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_d89fb5dfce954ce3eb6badfc469362313a77be9a.svg

commutes, so in particular 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_746c0cbf313fa1f7ce2e08a98910916c78c93cd5.svg what we wanted to show.

surjective

Now the Homomorphiesatz shows that there exists a unique map 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_06305fe028cc629a35975b3f00b9b99b174bd7d1.svg making the diagram commute

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_743682f35eff560966d4cc3792c80aab04fad8c3.svg

We claim that the composite 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_5a1c8a18906d9080b40dd1565620218958f934c3.svg is a preimage of 20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_66ac78dc6b6c8032eefdca51adb242ad1bdeb89d.svg.
This follows from

20251203-universal_property_of_the_quotient_space_via_homomorphiesatz_f3c4cacc7bb89448fd5d26258f20501dce82659b.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-12-05 Fr 10:18