fundamental theorem of module homomorphisms

1. Proposition

Let 20231214-fundamental_theorem_of_module_homomorphisms_6130b692b4d58a44d70e323b9432701598ebebee.svg be a ring, 20231214-fundamental_theorem_of_module_homomorphisms_612a3d41795adef416750fa250ce585eadd8340d.svg a 20231214-fundamental_theorem_of_module_homomorphisms_d9fed023a9d07263c522f5c4dbb780117ad7ad02.svg-module 20231214-fundamental_theorem_of_module_homomorphisms_9321275f823094b102684fc957c60e04118a562c.svg a submodule. Suppose

20231214-fundamental_theorem_of_module_homomorphisms_32c527f39d1748a4f22ef7da09065d4c42d20351.svg

is the canonical projection to the quotient module

Then for each module-homomorphism

20231214-fundamental_theorem_of_module_homomorphisms_081fa8dae28f94b681d99aff7de116506291ff87.svg

such that 20231214-fundamental_theorem_of_module_homomorphisms_a40a5b3526e9af50877f6689ef3d023e6a111251.svg, then there exists a unique module-homomorphism 20231214-fundamental_theorem_of_module_homomorphisms_339016780431b4407dc42a9e2e87f84c5ac77a04.svg such that

20231214-fundamental_theorem_of_module_homomorphisms_b937d7deca21d0f5ef83d84b41bd59fd2b53c222.svg

2. Proof

2.1. uniqueness

Suppose we have 20231214-fundamental_theorem_of_module_homomorphisms_85e0758714b8968697a5ccf62de8c43061fc9cf9.svg satisfying the condition. then we get

20231214-fundamental_theorem_of_module_homomorphisms_b6d604d29d969b6b6bdedc5a1106f57fc751567f.svg

Since 20231214-fundamental_theorem_of_module_homomorphisms_23eb926065f84471a319a36b6cdec9bebb87542f.svg is surjective, by surjective map as epimorphism we conclude, that 20231214-fundamental_theorem_of_module_homomorphisms_23eb926065f84471a319a36b6cdec9bebb87542f.svg is an epimorphism. Hence it follows, that

20231214-fundamental_theorem_of_module_homomorphisms_85288a6aa84b6a7ee18e4696c265ef77273ed8c7.svg

2.2. existence

Let

20231214-fundamental_theorem_of_module_homomorphisms_10acbbb3356c6b76a550ceb833cc1d35f55f8626.svg

2.2.1. welldefined map

Let 20231214-fundamental_theorem_of_module_homomorphisms_67283a1144f9f705496427661181250ce5611564.svg. Then there exists an 20231214-fundamental_theorem_of_module_homomorphisms_99e7a6305474661856799126151861a5c776f9af.svg such that 20231214-fundamental_theorem_of_module_homomorphisms_34fd22905840d109a841ff7ffa391c450d57b86b.svg. Therefore,

20231214-fundamental_theorem_of_module_homomorphisms_28b9e36d7b042e70874785b1a016140635b2ee12.svg

2.2.2. module homomorphism

2.2.2.1. additive
20231214-fundamental_theorem_of_module_homomorphisms_cdd9f3f27be865d7db9288097780f1fda8fd62a5.svg
2.2.2.2. multiplication
20231214-fundamental_theorem_of_module_homomorphisms_fea70bce3eb807b3ff5ef78461c1f4dc364b0022.svg

2.2.3. commutes

follows from construction

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 23:48