vector space epimorphism splits
Proposition
Let \(K\) be a field, \(U,V\) vector spaces and \(f: V \twoheadrightarrow U\) be a vectorspace-epimorphism
Then \(f\) is split epi, i.e. there exists a vector space homomorphism \(\iota: U \rightarrow V\) such that
Proof
Choose a basis \(u_i\) of \(U\) (cf. Existenz einer Basis in einem Vektorraum).
Then since \(f: V \twoheadrightarrow U\) is surjective, we may find preimages \(v_i\) of \(u_i\), i.e.
Then define
via extending (cf. Existenz und Eindeutigkeit eines Homomorphismus durch die Abbildungen der Basis)
It follows that
hence \(f \circ g\) is the identity on the basis \(u_i\).
Hence by uniqueness of the extension, it is the identity on \(U\)