compact open topology for a singleton homeomorphic to the space
1. Proposition
Let \((X, \mathcal{T})\) be a topological space. Then the mapping space \(\mathcal{C}(*,X)\) with the compact open topology for \(*\) as singleton is homeomorphic to \(X\) for
\begin{align*} \varphi: X \rightarrow& \mathcal{C}(*,X) \\ x \mapsto& (f: * \mapsto x) \end{align*}2. Proof
2.2. bijective
follows from the evident Inverse map
\begin{align*} \varphi^{-1}: (f) \mapsto f(*) \end{align*}2.3. continuous
continuous map and subbasis Let \(\mathcal{O}_{K,U} \subseteq \mathcal{C}(*,X)\) be open. Then it follows
\begin{align*} \varphi^{-1}[\mathcal{O}_{K,U}] =& \varphi^{-1}[\mathcal{O}_{*,U}] \\ =& \varphi^{-1}[\{f \in \mathcal{C}(*,X) \vert f(*) \in U\}] \\ =& \{x \in X \vert \varphi(x)(*) \in U \} \\ =& \{x \in X \vert x \in U \} =& U \end{align*}2.4. open map
Suppose \(O\) is open, then
\begin{align*} \varphi[O] =& \{f \in \mathcal{C}(*,X) \vert f(*) \in O\} \\ =& \mathcal{O}_{*, O} \end{align*}hence \(\varphi[O]\) is open