equalizer of modules

1. Proposition

Let 20240122-equalizer_of_modules_22a535293244fe74fc7a4bdd15d746de7c32685f.svg be a ring, 20240122-equalizer_of_modules_8bf4eb9b75e039701faeb68f09475976f5677acf.svg be modules and 20240122-equalizer_of_modules_7ff6ee7b2408474c904995f2df148c09cde9a7c2.svg a module-homomorphism. Then the equalizer is the submodule

20240122-equalizer_of_modules_1f85bbb3a38635514f99e29cad187ee532aa6f2f.svg

2. Proof

2.1. kernel construction

Note that for 20240122-equalizer_of_modules_f033e8bc0590490e41c5828e661cf6c892da1117.svg

20240122-equalizer_of_modules_506286306569a60535fd06e8bfcbd2150e4aceb9.svg

hence the sets agree see: kernel

2.2. submodule

2.3. universal property

Suppose there exists a module homomorphism 20240122-equalizer_of_modules_b9976f1bd18a72b567a7a206e69a5da1a1dbc698.svg making this a fork

20240122-equalizer_of_modules_e7e7fe9243f5e9618045935368cc01be4ea15ad1.svg

Then we define

20240122-equalizer_of_modules_840afab3d1a16708d88df1e7add79b6b7daa356e.svg

by restriction of a module homomorphism to the image as module homomorphism it remains to show, that this map is welldefined: For 20240122-equalizer_of_modules_816a4631b60e7596261966be67dc77802f43ad7d.svg, it follows that

20240122-equalizer_of_modules_57d9cb058893434cc67d28fd2fd19df55bda3a12.svg

hence

20240122-equalizer_of_modules_fcd7e55fec35ae1044afdc6f374fe29e0aaafedd.svg

or 20240122-equalizer_of_modules_c1635c21d131ef9a5f35e8505fd8e3cacb5ba388.svg

Date: nil

Author: Anton Zakrewski

Created: 2024-10-20 So 09:04