equalizer of modules
1. Proposition
Let be a ring,
be modules and
a module-homomorphism.
Then the equalizer is the submodule
2. Proof
2.1. kernel construction
2.2. submodule
follows from
- Menge der Modulhomomorphismen als abelsche Gruppe, hence
is a module homomorphism
- Kernel of a module homomorphism as submodule
2.3. universal property
Suppose there exists a module homomorphism making this a fork
Then we define
by restriction of a module homomorphism to the image as module homomorphism it remains to show, that this map is welldefined:
For , it follows that
hence
or