splitting Lemma for vector spaces

Proposition

Let 20250114-splitting_lemma_for_vector_spaces_3cfd7a299d478f9bf2528fa65c00521e0cd88159.svg be a field, 20250114-splitting_lemma_for_vector_spaces_eed2c8d262e62b566f5eab2ebf531c8c3783ddd4.svg vector spaces and

20250114-splitting_lemma_for_vector_spaces_1ae7ca7e38c57571e91f2a1231219a3530205523.svg

be a short exact sequence, i.e.

20250114-splitting_lemma_for_vector_spaces_acbda30ce68057a1df24c1dbf9e27a22183a3600.svg

(here the second and third equation precisely state, that 20250114-splitting_lemma_for_vector_spaces_ad6a03aaa8d3a8bd22f0e7659be6109d78aaf52a.svg is injective and 20250114-splitting_lemma_for_vector_spaces_50706fcb59084c951cf44498a2491f2cd0455273.svg is surjective)

Then there exists a vectorspace-isomorphism 20250114-splitting_lemma_for_vector_spaces_e582c9f848cf1d97bd31e116d77ecacf06a5c59e.svg such that the diagram

20250114-splitting_lemma_for_vector_spaces_b5d0594c9e56a93877078102391d71c8051387a1.svg

commutes

here

20250114-splitting_lemma_for_vector_spaces_eca46839a5fc0a674b25a14157a894961f241fa3.svg

are the evident vectorspace homomorphisms.

Proof

we construct a morphism

20250114-splitting_lemma_for_vector_spaces_65975cbaa62a6934fa45d90c70b737089576cf52.svg

show that 20250114-splitting_lemma_for_vector_spaces_8144a619b2dbb872aed8bb67570d26aa78041dd2.svg is a bijection (hence an isomorphism) and that the diagrams commute.

morphism

choose a basis 20250114-splitting_lemma_for_vector_spaces_6e85ca729469f3ce7ce36389c026f9268777f536.svg of 20250114-splitting_lemma_for_vector_spaces_916c362ec11687631f4cc94f340c13fef3d5f949.svg.
Then by assumption 20250114-splitting_lemma_for_vector_spaces_ad6a03aaa8d3a8bd22f0e7659be6109d78aaf52a.svg is injective, hence 20250114-splitting_lemma_for_vector_spaces_245912b62e302dc1194ebedd14a7ef9353cbc418.svg is linearly independent (cf. Vektorraummonomorphismus erhält lineare Unabhängigkeit).
We may extend 20250114-splitting_lemma_for_vector_spaces_788f4305e21586029e6f84858b982825cda0da0e.svg to a basis (cf. erweiterung einer linear unabhängigen Menge zu einer Basis) 20250114-splitting_lemma_for_vector_spaces_4058ce04e846c87e3f05b47823027c0105103a98.svg and define

20250114-splitting_lemma_for_vector_spaces_627dbd8d4e447b22707875bb9a4a42d703b6307d.svg

where the map 20250114-splitting_lemma_for_vector_spaces_437e11476c5675e2a0afc9ba90b911f2103cdde9.svg is welldefined (existence follows from assumption, uniqueness follows from injectivity of 20250114-splitting_lemma_for_vector_spaces_ad6a03aaa8d3a8bd22f0e7659be6109d78aaf52a.svg).

It follows that

20250114-splitting_lemma_for_vector_spaces_f371254ca2a0f75b294f624493875cb57ade076f.svg

for example since 20250114-splitting_lemma_for_vector_spaces_24cdf11477a066c936b0f651e204aaa97241080b.svg (cf. Existenz und Eindeutigkeit eines Homomorphismus durch die Abbildungen der Basis)

Then define

20250114-splitting_lemma_for_vector_spaces_b3f145e83c1a15da74d11bbe036faa0d21d74d24.svg

bijective

injective

Let 20250114-splitting_lemma_for_vector_spaces_5a024664fe1628554987fc87e606c617fc86c1d6.svg.
Then in particular 20250114-splitting_lemma_for_vector_spaces_26e420cf3e62575d53985050c27b9873ca8b5b0b.svg and we may find a preimage 20250114-splitting_lemma_for_vector_spaces_df615aaad72efaae55f731e82c6cc562cdeb1933.svg of 20250114-splitting_lemma_for_vector_spaces_a5ee7956bccad070a87dd3f8cdb6aacdc6351da5.svg under 20250114-splitting_lemma_for_vector_spaces_ad6a03aaa8d3a8bd22f0e7659be6109d78aaf52a.svg (since 20250114-splitting_lemma_for_vector_spaces_139acd72d6c5aa46cabacc44efd6c32b1cdf1931.svg.

It follows that

20250114-splitting_lemma_for_vector_spaces_3668c970134a7abaaf3cdcd55b51bbc9666e04d0.svg

which shows 20250114-splitting_lemma_for_vector_spaces_2fa9ebba74e9d340db78e89c5eca4e92c21f970f.svg or 20250114-splitting_lemma_for_vector_spaces_bd8a7f6a83253ae683ed76a6bbee1699f5a76f15.svg.

Thus we are done by minimal kernel and monomorphism

surjective

by hand for finite dimensional 20250114-splitting_lemma_for_vector_spaces_aece55fdf8c708059dffe75423e0d96c1e4c6b59.svg

note that

20250114-splitting_lemma_for_vector_spaces_04dda7d0095fba704ab57df4077da10d3cda9b77.svg

where the last equality follows from the rank theorem.

general case

Let 20250114-splitting_lemma_for_vector_spaces_978ed081d73a6becd69d693b017d5b71089a7098.svg.
Then choose a one side inverses 20250114-splitting_lemma_for_vector_spaces_611e0534c3b84cb64365a3d18863f258a7626b8f.svg

20250114-splitting_lemma_for_vector_spaces_33af10f9ba71a269ed2a149c45fa202eb13b1e3c.svg
20250114-splitting_lemma_for_vector_spaces_353b5123ad1ad5d4804f3370017bd137bd167abe.svg

with

20250114-splitting_lemma_for_vector_spaces_1fd58a89a4183bfa57cacaebd99da3b0fb8a1fea.svg

(cf. vector space epimorphism splits, vector space monomorphism splits)

Then define

20250114-splitting_lemma_for_vector_spaces_60ad7f4ffc0f197082c64efcac41423f340d9d81.svg

Then applying 20250114-splitting_lemma_for_vector_spaces_8144a619b2dbb872aed8bb67570d26aa78041dd2.svg shows

20250114-splitting_lemma_for_vector_spaces_9cae83e068a3596e878049613a44b2651c73dee8.svg

It remains to show that

20250114-splitting_lemma_for_vector_spaces_7d075dd3e39f79e61c33bf182746e98401c63ef6.svg

Here we get

20250114-splitting_lemma_for_vector_spaces_affa79a392b42cd39d7a7c610871934a52a98880.svg

and

20250114-splitting_lemma_for_vector_spaces_a8dcc2f12266db08b9b27d30d1a86b9589d0ddb9.svg

since 20250114-splitting_lemma_for_vector_spaces_2d3ba9fff79add2e1aa83349f5370e53eb21143c.svg

commutes

follows as

20250114-splitting_lemma_for_vector_spaces_4df5bc6cbdd71e5e800e842cd5945b762d99bf87.svg

since 20250114-splitting_lemma_for_vector_spaces_3399e30a7c22970e8fbd0b9de266ccde348c584f.svg

and

20250114-splitting_lemma_for_vector_spaces_6d0cea8c7b3ec13d3034a5d3aae50794a884024c.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 09:50